OVERVIEW

- Introduction
- About Proterra
 - Company overview
 - Transit EVs in the US
- Transit EV Market
- Total Cost of Ownership
- Capacity/Range Portfolio
- Alternative Applications
- Core EV Technologies
 - Battery Technology Deep Dive
- Q&A
ABOUT ME

• Mechanical Engineer
• Robotics and Automation
• At Proterra for 2 years
ABOUT PROTERRA

Proterra’s Mission
Advancing electric vehicle technology to deliver the world’s best-performing transit vehicles

- Proterra makes:
 - Electric buses
 - Core technologies required to execute electric buses
- Founded in 2004
- Offices and manufacturing in CA and SC
- 300+ employees
- >60 customers; >500 vehicles sold
- >150 vehicles delivered; >4,000,000 service miles
EV CUSTOMERS SPAN THE UNITED STATES

512 buses sold to 64 customers across 29 states
Proterra is the market leader in electro-mobility

- Diesel and CNG buses are the primary fuel types used today
- As the leader of the electric transit bus market, Proterra is well positioned to capture immense growth

Source: National Transit Database 2016, management estimates.
1. Market data as total number of buses sold over life time of the respective companies
2. Frost and Sullivan
• Battery-electric vehicles have the lowest operational lifecycle cost

• High EV energy efficiency, low electricity rates, and high annual vehicle mileage combine to create significant fuel savings
 - Electric buses have a fuel efficiency of 2kWh/mi compared to diesel’s equivalent of ~10 kWh/mi
 - Electricity prices are also more stable and predictable than volatile fossil fuel prices

• Electric buses have 30% fewer parts, dramatically reducing maintenance and operating costs

Source: Management Estimates
(1) Assumes annual mileage of 34,000 miles
INDUSTRY LEADER IN HEAVY DUTY EV TECHNOLOGY

Advanced Composite Body
Lightweight and durable carbon-fiber-reinforced composite

Heavy Duty Battery Pack
High energy density, ruggedized and purpose built for commercial vehicles

High Efficiency Drivetrain
2X horsepower, 2X acceleration, 5X efficiency of diesel, 26.1 MPGe

Universal Charging
Industry standard plug-in and overhead high power Level 3 charging
THE PROTERRA CATALYST’S RANGE

*Depending on model. Nominal range = total energy/ projected Altoona efficiency. Actual range will vary with route conditions, battery configuration and driver behavior.

WORLD RECORD!

Catalyst E2 max
660 kWh

1101.2 miles

For 24-hour circulator routes
12-15 miles recharged per 5 min
55-72 miles nominal range*

Catalyst PC
79 kWh

Catalyst PC+
105 kWh

Catalyst XR
220 kWh

Catalyst XR+
330 kWh

Catalyst E2
440 kWh

Catalyst E2+
550 kWh

For low daily mileage
< 2.5 hrs. charge time
136-193 miles nominal range*

XR Series

For longest routes
< 4.5 hrs. charge time
251-350 miles nominal range*

E2 Series
PROTERRA’S CORE TECHNOLOGY IS APPLICABLE TO A VARIETY OF END-MARKETS

Proterra Core Technologies

- Bi-Directional Power Control Systems
- High Voltage Battery Packs
- High Power/Efficiency Drivetrain

Proterra Transit Vehicles

Heavy Duty Vehicle Electrification

Fleet Infrastructure

Stationary Storage
CELL SELECTION: DISCHARGE THROUGHPUT

Standard Battery Applications

EV Battery Application

30% more discharge throughput
The cell requirements to satisfy the “all-electric” heavy duty application are unique.
- There is a job to do that requires a guaranteed amount of energy for the service life of the battery.

Very high cycling life is required in combination with:
- Excellent safety tolerance and response
- Very high energy density
- High power
- Facilitates volumetric packing density
- Facilitates high level of mechanical robustness
- Facilitates reliable electrical interface

![Normalized Cell Energy Usage Requirements for Various Industries](image)

Heavy Duty applications require SIGNIFICANTLY more cell cycling capability than passenger vehicles or portable consumer applications (i.e. phones, tablets).
• Temperature is the most significant factor in battery degradation

• Proterra maintains optimal temperature of the cells with unique liquid cooling
 o Most advanced thermal controls in bus transit
 o Cells are individually liquid-cooled through spine of battery modules
 o Modules monitored individually

Sources: NREL
Factors in overcharging
- Regularly using a battery’s full capacity
- Regularly charging at too high a rate

Proterra uses proprietary battery control algorithms to ensure that battery charges and operates in the ‘Goldilocks Zone’
• Planned 2019 cell capacity increase: +5% (twice)

• Proterra maintains on-going R&D with the world’s leading cells suppliers

• Key Areas of Focus for New Developments
 - Cell Form Factor and other mechanical aspects
 - Safety, Cost, Energy Density,
 - Materials – separator, cathode, anode variations, coatings, and electrolytes additives
 - Safety, Cost, Cycle Life, Energy Density
THANK YOU